310 research outputs found

    Optical system for high-speed AFM

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 191-192).This thesis presents the design and development of an optical cantilever deflection sensor for a high speed Atomic Force Microscope (AFM). This optical sensing system is able to track a small cantilever while the X-Y scanner moves in the X-Y plane at 1KHz over a large range of 50x50 microns. To achieve these requirements, we evaluated a number of design concepts among which the lever method and the fiber collimator method were selected. Experiments were performed to characterize the performance of the integrated AFM and to show that the cantilever tracking while the scanner is in operation was accomplished. A triangular grating was imaged with the lever method optical subassembly integrated with the scanner to demonstrate the effectiveness of the approach.by Kwang Yong Lim.S.M

    Observation of First-Order Metal-Insulator Transition without Structural Phase Transition in VO_2

    Full text link
    An abrupt first-order metal-insulator transition (MIT) without structural phase transition is first observed by current-voltage measurements and micro-Raman scattering experiments, when a DC electric field is applied to a Mott insulator VO_2 based two-terminal device. An abrupt current jump is measured at a critical electric field. The Raman-shift frequency and the bandwidth of the most predominant Raman-active A_g mode, excited by the electric field, do not change through the abrupt MIT, while, they, excited by temperature, pronouncedly soften and damp (structural MIT), respectively. This structural MIT is found to occur secondarily.Comment: 4 pages, 4 figure

    Monoclinic and Correlated Metal Phase in VO_2 as Evidence of the Mott Transition: Coherent Phonon Analysis

    Full text link
    In femtosecond pump-probe measurements, the appearance of coherent phonon oscillations at 4.5 THz and 6.0 THz indicating the rutile metal phase of VO_2 does not occur simultaneously with the first-order metal-insulator transition (MIT) near 68^oC. The monoclinic and correlated metal(MCM) phase between the MIT and the structural phase transition (SPT) is generated by a photo-assisted hole excitation which is evidence of the Mott transition. The SPT between the MCM phase and the rutile metal phase occurs due to subsequent Joule heating. The MCM phase can be regarded as an intermediate non-equilibrium state.Comment: 4 pages, 2 figure

    ECG measurement on a chair without conductive contact

    Get PDF
    For the purpose of long-term, everyday electrocardiogram (ECG) monitoring, we present a convenient method of ECG measurement without direct conductive contact with the skin while subjects sat on a chair wearing normal clothes. Measurements were made using electrodes attached to the back of a chair, high-input-impedance amplifiers mounted on the electrodes, and a large ground-plane placed on the chair seat. ECGs were obtained by the presented method for several types of clothing and compared to ECGs obtained from conventional measurement using Ag-AgCl electrodes. Motion artifacts caused by usual desk works were investigated. This study shows the feasibility of the method for long-term, convenient, everyday use

    Web-Based Interlibrary Loan System

    Get PDF

    Characterization of single photon sources for radiometry applications at room temperature

    Full text link
    A single photon source with high repeatability and low uncertainties is the key element for few-photon metrology based on photon numbers. While low photon number fluctuations and high repeatability are important figures for qualification as a standard light source, these characteristics are limited in single photon emitters by some malicious phenomena like blinking or internal relaxations to varying degrees in different materials. This study seeks to characterize photon number fluctuations and repeatability for radiometry applications at room temperature. For generality in this study, we collected photon statistics data with various single photon emitters of g(2)(0)<1g^{(2)}(0) < 1 at low excitation power and room temperature in three material platforms: silicon vacancy in diamond, defects in GaN, and vacancy in hBN. We found common factors related with the relaxation times of the internal states that indirectly affect photon number stability. We observed a high stability of photon number with defects in GaN due to faster relaxations compared with vacancies in hBN, which on the other hand produced high rates (>106> 10^6) of photons per second. Finally, we demonstrate repeatable radiant flux measurements of a bright hBN single photon emitter for a wide radiant flux range from a few tens of femtowatts to one picowatt.Comment: Submitted to: Materials for Quantum Technology (IOP
    corecore